单细胞RNA-seq数据允许在不断增长的一组生物环境中定量细胞类型差异。但是,确定了一小部分基因组特征来解释这种变异性可能是错误的,并且在计算上很棘手。在这里,我们介绍了MarkerMap,这是一种用于选择最小基因集的生成模型,这些基因集对细胞类型的起源提供最大信息,并启用整个转录组重建。MarkerMap为旨在识别特定细胞类型种群的监督标记选择提供了可扩展的框架,以及针对基因表达插补和重建的无监督标记选择。我们基于Markermap的竞争性能,以实现对真实单细胞基因表达数据集的先前发表的方法。MarkerMap可作为可安装的PIP软件包获得,可作为旨在开发可解释的机器学习技术的社区资源,以增强单细胞研究中的可解释性。
translated by 谷歌翻译
Pruning refers to the elimination of trivial weights from neural networks. The sub-networks within an overparameterized model produced after pruning are often called Lottery tickets. This research aims to generate winning lottery tickets from a set of lottery tickets that can achieve similar accuracy to the original unpruned network. We introduce a novel winning ticket called Cyclic Overlapping Lottery Ticket (COLT) by data splitting and cyclic retraining of the pruned network from scratch. We apply a cyclic pruning algorithm that keeps only the overlapping weights of different pruned models trained on different data segments. Our results demonstrate that COLT can achieve similar accuracies (obtained by the unpruned model) while maintaining high sparsities. We show that the accuracy of COLT is on par with the winning tickets of Lottery Ticket Hypothesis (LTH) and, at times, is better. Moreover, COLTs can be generated using fewer iterations than tickets generated by the popular Iterative Magnitude Pruning (IMP) method. In addition, we also notice COLTs generated on large datasets can be transferred to small ones without compromising performance, demonstrating its generalizing capability. We conduct all our experiments on Cifar-10, Cifar-100 & TinyImageNet datasets and report superior performance than the state-of-the-art methods.
translated by 谷歌翻译
Automatic medical image classification is a very important field where the use of AI has the potential to have a real social impact. However, there are still many challenges that act as obstacles to making practically effective solutions. One of those is the fact that most of the medical imaging datasets have a class imbalance problem. This leads to the fact that existing AI techniques, particularly neural network-based deep-learning methodologies, often perform poorly in such scenarios. Thus this makes this area an interesting and active research focus for researchers. In this study, we propose a novel loss function to train neural network models to mitigate this critical issue in this important field. Through rigorous experiments on three independently collected datasets of three different medical imaging domains, we empirically show that our proposed loss function consistently performs well with an improvement between 2%-10% macro f1 when compared to the baseline models. We hope that our work will precipitate new research toward a more generalized approach to medical image classification.
translated by 谷歌翻译
Machine learning models are known to be susceptible to adversarial perturbation. One famous attack is the adversarial patch, a sticker with a particularly crafted pattern that makes the model incorrectly predict the object it is placed on. This attack presents a critical threat to cyber-physical systems that rely on cameras such as autonomous cars. Despite the significance of the problem, conducting research in this setting has been difficult; evaluating attacks and defenses in the real world is exceptionally costly while synthetic data are unrealistic. In this work, we propose the REAP (REalistic Adversarial Patch) benchmark, a digital benchmark that allows the user to evaluate patch attacks on real images, and under real-world conditions. Built on top of the Mapillary Vistas dataset, our benchmark contains over 14,000 traffic signs. Each sign is augmented with a pair of geometric and lighting transformations, which can be used to apply a digitally generated patch realistically onto the sign. Using our benchmark, we perform the first large-scale assessments of adversarial patch attacks under realistic conditions. Our experiments suggest that adversarial patch attacks may present a smaller threat than previously believed and that the success rate of an attack on simpler digital simulations is not predictive of its actual effectiveness in practice. We release our benchmark publicly at https://github.com/wagner-group/reap-benchmark.
translated by 谷歌翻译
We study the problem of profiling news media on the Web with respect to their factuality of reporting and bias. This is an important but under-studied problem related to disinformation and "fake news" detection, but it addresses the issue at a coarser granularity compared to looking at an individual article or an individual claim. This is useful as it allows to profile entire media outlets in advance. Unlike previous work, which has focused primarily on text (e.g.,~on the text of the articles published by the target website, or on the textual description in their social media profiles or in Wikipedia), here our main focus is on modeling the similarity between media outlets based on the overlap of their audience. This is motivated by homophily considerations, i.e.,~the tendency of people to have connections to people with similar interests, which we extend to media, hypothesizing that similar types of media would be read by similar kinds of users. In particular, we propose GREENER (GRaph nEural nEtwork for News mEdia pRofiling), a model that builds a graph of inter-media connections based on their audience overlap, and then uses graph neural networks to represent each medium. We find that such representations are quite useful for predicting the factuality and the bias of news media outlets, yielding improvements over state-of-the-art results reported on two datasets. When augmented with conventionally used representations obtained from news articles, Twitter, YouTube, Facebook, and Wikipedia, prediction accuracy is found to improve by 2.5-27 macro-F1 points for the two tasks.
translated by 谷歌翻译
While there have been a number of remarkable breakthroughs in machine learning (ML), much of the focus has been placed on model development. However, to truly realize the potential of machine learning in real-world settings, additional aspects must be considered across the ML pipeline. Data-centric AI is emerging as a unifying paradigm that could enable such reliable end-to-end pipelines. However, this remains a nascent area with no standardized framework to guide practitioners to the necessary data-centric considerations or to communicate the design of data-centric driven ML systems. To address this gap, we propose DC-Check, an actionable checklist-style framework to elicit data-centric considerations at different stages of the ML pipeline: Data, Training, Testing, and Deployment. This data-centric lens on development aims to promote thoughtfulness and transparency prior to system development. Additionally, we highlight specific data-centric AI challenges and research opportunities. DC-Check is aimed at both practitioners and researchers to guide day-to-day development. As such, to easily engage with and use DC-Check and associated resources, we provide a DC-Check companion website (https://www.vanderschaar-lab.com/dc-check/). The website will also serve as an updated resource as methods and tooling evolve over time.
translated by 谷歌翻译
在这个大数据时代,当前一代很难从在线平台中包含的大量数据中找到正确的数据。在这种情况下,需要一个信息过滤系统,可以帮助他们找到所需的信息。近年来,出现了一个称为推荐系统的研究领域。推荐人变得重要,因为他们拥有许多现实生活应用。本文回顾了推荐系统在电子商务,电子商务,电子资源,电子政务,电子学习和电子生活中的不同技术和发展。通过分析有关该主题的最新工作,我们将能够详细概述当前的发展,并确定建议系统中的现有困难。最终结果为从业者和研究人员提供了对建议系统及其应用的必要指导和见解。
translated by 谷歌翻译
不确定性量化(UQ)对于创建值得信赖的机器学习模型至关重要。近年来,UQ方法急剧上升,可以标记可疑的例子,但是,通常不清楚这些方法确切地识别出什么。在这项工作中,我们提出了一种假设轻型方法来解释UQ模型本身。我们介绍了混淆密度矩阵 - 基于内核的错误分类密度的近似 - 并使用它将给定UQ方法识别的可疑示例分类为三类:分布外(OOD)示例,边界(BND)(BND)示例和较高分布错误分类(IDM)地区的示例。通过广泛的实验,我们阐明了现有的UQ方法,并表明了模型之间不确定性的原因有所不同。此外,我们展示了建议的框架如何利用分类的示例来提高预测性能。
translated by 谷歌翻译
边缘设备上有限且动态的资源激励我们部署优化的深神经网络,该网络可以调整其子网络以适应不同的资源约束。但是,现有作品通常通过在手工制作的采样空间中搜索不同的网络体系结构来构建子网络,这不仅可以导致低标准的性能,而且可能导致设备上的重新配置开销。在本文中,我们提出了一种新颖的培训算法,动态的实时稀疏子网(着装)。着装通过基于行的非结构化稀疏度从相同的骨干网络采样多个子网络,并与加权损失并联训练这些子网络。着装还利用包括参数重复使用和基于行的细粒抽样在内的策略,以进行有效的存储消耗和有效的机上适应。公共视觉数据集的广泛实验表明,与最先进的子网络相比,着装的准确性明显更高。
translated by 谷歌翻译
深度强化学习(DRL)使用多样化的非结构化数据,并使RL能够在高维环境中学习复杂的策略。基于自动驾驶汽车(AVS)的智能运输系统(ITS)为基于政策的DRL提供了绝佳的操场。深度学习体系结构解决了传统算法的计算挑战,同时帮助实现了AV的现实采用和部署。 AVS实施的主要挑战之一是,即使不是可靠和有效地管理的道路上的交通拥堵可能会加剧交通拥堵。考虑到每辆车的整体效果并使用高效和可靠的技术可以真正帮助优化交通流量管理和减少拥堵。为此,我们提出了一个智能的交通管制系统,该系统处理在交叉路口和交叉点后面的复杂交通拥堵场景。我们提出了一个基于DRL的信号控制系统,该系统根据当前交叉点的当前拥塞状况动态调整交通信号。为了应对交叉路口后面的道路上的拥堵,我们使用重新穿线技术来加载道路网络上的车辆。为了实现拟议方法的实际好处,我们分解了数据筒仓,并将所有来自传感器,探测器,车辆和道路结合使用的数据结合起来,以实现可持续的结果。我们使用Sumo微型模拟器进行模拟。我们提出的方法的重要性从结果中体现出来。
translated by 谷歌翻译